SQLAIchemy Session -
In Depth

The Transaction

The Transaction

The primary system employed by relational
databases for managing data.

Provides a scope around a series of operations with
lots of desirable behaviors.

The transaction follows the ACID model.

Relational databases usually use transactions for all
operations; if they aren't apparent, it is probably
using "autocommit" by default.

ACID Model

Transactions are atomic - all changes which occur can be
rolled back to the state preceding the transaction.

address address

address BEGIN INSERT INTO address (id, INSERT INTO address (id, addiess
____________________________ TRANSACTION user_id, email) user_id, email) ROLLBACK |~
1 1 ed@gmail.com VALUES (2, 1, 'ed@aol.com’) VALUES (3, 2, jack@msn.com') 1 1 ed@gmail.com
TRANSACTION >

DATABASE STATE >

ACID Model

The transaction provides consistency; rules exist for how
data can be created and manipulated, which often limit
the order in which operations can take place

Constraints: Constraints: Constraints:
1. NOT NULL fields present 1. NOT NULL fields all present 1. NOT NULL fields all present
2. primary key unique 2. primary key unique 2. primary key unique
3. user_id column present in 3. user_id column present in
user.id user.id
user address address
1 1 edegmaicom | | 11 ed@gmailcom
U [o
1 Ed Jones 2 1 ed@aol.com
INSERT INTO user (id, name) INSERT INTO address (id, INSERT INTO address (id,
VALUES (1, 'Ed Joﬁes‘) user_id, email) user_id, email)

VALUES (1, 1, 'ed@gmail.com’) VALUES (2, 1, 'ed@aol.com')
TRANSACTION >

ACID Model

Transactions are isolated - to a varying degree, changes
on the inside aren't visible on the outside, and vice versa.
Historically, table and row locks are used to achieve this...

address
31 edegmailcom
SR
2 1 ed@aol.com
UPDATE address SET INSERT INTO address
email='ed@aol.com' WHERE id=2 (id, user_id, email)
address _________ VALUES (3, 2, 'jack@msn.com’) T E—
1 1 ed@gmail.com
[---------------------------- TRANSACTION ONE >
B —— SELECT * FROM address -
............................. WHERE id=2 (waiting for lock....)
TRANSACTION TWO ———>

DATABASE STATE >

ACID Model

.. but most modern databases today feature multi-
version concurrency control, which provides a high
degree of isolation with much less locking

address address

INSERT INTO address (id, INSERT INTO address (id,
user_id, email) user_id, email)
VALUES (2, 1, 'ed@aol.com’) VALUES (3, 2, jack@msn.com’)
TRANSACTION ONE >
address address
T edegmailcom I G maicomit
address address
T edegmailcom
SELECT * FROM address SELECT * FROM address
TRANSACTION TWO >

DATABASE STATE >

ACID Model

Transactions are durable - after COMMIT, you're good!

VRN g i ,

¢ &
£
i 3 1

Object Relational
Mappers and
Transactions

Our First ORM

Configuration

from my first orm import Entity, Integer, String, \
Numeric, ForeignKey, relationship

class User(Entity):
table = 'user'

id = Integer|()
name = String()

class Address(Entity):
table = 'address'

id = Integer|()
user id = ForeignKey('"User.id")

email = String()

user = relationship("User")

Our First ORM

Objects are persisted using obj.save(), deleted
with object.delete() - this is an active record
style of persistence

userl = User(name='Ed Jones')
userl.save() # emits INSERT

userl.name ='Edward Jones'

userl.save() # emits UPDATE
addressl = Address(email='ed@gmail.com', user=userl)
addressl.save() # emits INSERT

address2.delete() # emits DELETE

Our First ORM

Transactions are optional, provided via implicit
thread-local - else autocommit

from my_ first orm import Transaction
trans = Transaction.begin()

userl = User.get(id=5)

userl.name = "Ed Jones"

userl.save()

addressl = Address(email='ed@gmail.com', user=userl)
addressl.save()

trans.commit ()

Our First ORM

Instances not coordinated on identity - "Every
object for itself!”

>>> userl = User.get(id=5)
>>> user2 = User.get(id=5)

>>> userl is user?
False

>>> userl.name = 'Ed'
>>> user2.name = 'Jack'

>>> userl.name
lEdl

>>> user2.name
"Jack'

Active Record Persistence

¢ The means of persistence is provided via the interface
of each individual mapped object - object.save(),
object.delete(), etc.

® Objects aren't coordinated on a particular transaction
by default; "autocommit”, or transaction-per-
operation, is the default behavior.

e The objects don't otherwise share any connection to
each other; individual queries for the same rows
return different instances.

® Persist operations are immediate - an INSERT,
UPDATE, or DELETE is emitted directly.

Active Record - Issues

Lack of identity coordination pushes it into save()

def user process one():
user = User.get(id=5)
user.name = 'Jack Jones'
return user

def user process two():
user = User.get(id=5)
if user.name == 'Jack Jones':
address = Address(email='jack@gmail.com', user=user)
address.save()
return user

userl = user process one()

order of operations here affects the outcome -

need to save() early, possibly earlier than we'd like
userl.save()

user2 = user process two()

user2.save()

Active Record - Issues

immediate INSERT/UPDATE operations awkward,
inefficient
for user record in datafile:
user = User (name=user_ record.username)

user.save() # are all NOT NULL fields present?
otherwise we can't save() it yet...

for entry in user record.entries:
if entry.type == 'A':
address = Address(user=user)
address.email = entry.email

did we user.save() above? else can't do this,
would need to track it for later...
address.save()

elif entry.type == 'U':
user.fieldl = entry.fieldl

user.field2 = entry.field2
user.save() # must we UPDATE all columns each time,

and emit an UPDATE for each entry?

we can save() everything later, but we still must manually
maintain dependency ordering, and can't query as we go

Active Record - Issues

Instances can return stale or uncommitted data
(unless they SELECT every time)

userl = User.get(id=5)
userl.name = 'New Name'
userl.save()

user2 = User.get(id=5)
user2.name = 'Some Other Name'
user2.save()

fails - userl.name still says 'New Name'
assert userl.name == 'Some Other Name'

trans = Transaction.begin()
user2.name = 'Yet Another Name'
trans.rollback()

fails - user2.name still says 'Yet Another Name'
assert user2.name == 'Some Other Name'

Active Record - Issues

Lack of Behavioral Constraints Creates Confusion

queue = Queue.Queue()

def user producer(): # thread #1: produces User objects

trans = Transaction.begin()

for record in data:
user = User.get(name=record.username)
create User if it does not exist
if user is None:

user = User (name=record.username)

user.status = record.status
user.save()
queue.put (user)

trans.commit ()

def user consumer(): # thread #2: consumes User objects
while True:
user = queue.get()
trans = Transaction.begin()
if user.status == 'D': # is this status committed or not?
user.delete() # 1s this row persisted?
this code will randomly fail,
either silently or loudly, based on data
trans.commit ()
queue.task done()

The Session Solves All
Of These Issues!

The Session Strategy

Explicit transaction always present

The Session maintains a cached set of transaction
state, consisting of rows.

A row is typically only present in the Session if it was
selected or inserted in the span of that transaction.

Objects, when associated with a Session, are proxies
for rows, represented uniquely on primary key
identity.

Changes to objects are pushed out to rows before
each query, and at transaction end, using unit of
work.

The Object as Row Proxy

An object is said to be persistent when it acts as a proxy
to a row present in the transaction. This row is normally
always known as a result of a SELECT or an INSERT.

________________________ database
|
|
|
|

Address
id 1

transaction

The Object as Row Proxy

With no transaction present, the state of the objects is
expired. There is no view of the database data other than
via a transaction.

Address (expired) m
[issing>
i issing>

The Object as Row Proxy

An object that's outside of the Session, not yet
corresponding to any row, is said to be transient.

Session database
[Address (transient) | address
id <None> | | | | |11 edegmaicom
id 2 { """""""""""""""""
email jack@msn.com | [

The Object as Row Proxy

An object that's inside of the Session, but not yet
corresponding to any row, is said to be pending.

The Object as Row Proxy

A previously persistent object that's no longer associated
with a Session is said to be detached.
Detachment is useful for caching, but not much else.

Unit of Work

Unit of work lazily flushes only those rows/columns that
have changed, ordering to maintain consistency.

 unit of work

[}
[}
| L |
| o ﬂUSh() |
| ed_user.addresses[1].email = 1 : | :
: 'ed@aol.com' ! | |
! o SaveUpdateAll l S
| jack_user.addresses.append(- (User) 1 | transaction i
: Address (email='jack@msn.com') | ! : ! !
1)] 1 o ! 1
:_______________________________J b F " " "UPDATE user SET : : user (snapshot) : user
p name='Ed Jones' :\:\ _____________________ i
S e WHEREid=1_____1 1> Ed Jones P i ed
Session : [T
: 2 Jack : 2 Jack
| . R O P o e
|: <User> :l/ i : i
dirty [crsoess>] | SaveUpdateAll i |
' ! (Address) ! address (snapshot) ! address
[T R DR L T
[1 : : UPDATE address SET 1 ed@gmail.com i 1 1 ed@gmail.com
new | | emai=d@aolcom] [
-\ : : WHERE id=2 :-"""""""- : 2 1 ed@msn.com
L I T O it A ittt e B
i i
[} [}
[} [}
I 1 [} [}
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
[}
[}
[}
[}
[}
[}
[}
[}

Where'd the Session Come from?

e Unit of work, identity map discussed in Martin Fowler,
Patterns of Enterprise Architecture

e Hibernate for Java largely responsible for developing
Session concepts

® Java Persistence Architecture (JSR-220) specifies a
similar model, largely driven by Hibernate

¢ SQLAlchemy moved to a stricter, more correct model
in 0.5 through observation of the Storm ORM for
Python

Watching the Session
Solve those Issues

Session

Objects are stored in an identity map

def user process one(session):
user = session.query(User).get(5)
user.name = 'Jack Jones'
return user

def user process two(session):
user = session.query(User).get(5)
if user.name == 'Jack Jones':
address = Address(email='jack@gmail.com', user=user)
session.add(address)
return user

both functions get the same user
userl = user process _one(session)
user2 = user process_ two(session)
session.commit ()

Session

The unit of work pattern aggregates changes
and emits as needed

session = Session()

for user record in datafile:
user = User (name=user record.username)
session.add(user) # no INSERT here

for entry in user record.entries:
if entry.type == 'A':
address = Address(user=user)
address.email = entry.email
session.add(address) # no INSERT here

elif entry.type == 'U':
changes aggregated in memory.
user.fieldl = entry.fieldl
user.field2 = entry.field2

session.flush() # optional, will flush this user

session.commit() # flushes everything still pending

Session

Data is expired when transactions, always
explicit, are ended - hence no stale data

sessionl = Session()

userl = sessionl.query(User).filter by(id=5).one()
userl.name = 'New Name'

sessionl.commit ()

session2 = Session()

user2 = session2.query(User).filter by(id=5).one()
user2.name = 'Some Other Name'

session2.commit ()

userl was expired by the commit, reloads here
assert userl.name == 'Some Other Name'

change user2
user2.name = 'Yet Another Name'
session2.rollback()

user2 was expired by the rollback, reloads here
assert user2.name == 'Some Other Name'

Session

Objects proxying to other transactions aren't
accepted

queue = Queue.Queue()

def user producer():
session = Session()
for record in data:
user = session.query(User).\
filter by(name=record.username).first()
if user is None:
session.add(User (name=record.username))
queue.put (user)
session.commit ()

def user consumer():
while True:

user = queue.get()

session = Session()

if user.status == 'D':

session.delete(user) # raises an exception, this user

proxies a row from a different
transaction. Code fails
unconditionally.

session.commit ()

queue.task done()

"Live" Session Demo

User/Address

class User(Base):
__tablename = "user"

id = Column(Integer, primary key=True)
name = Column(String)
addresses = relationship("Address")

class Address(Base):
___tablename = "address"

id = Column(Integer, primary key=True)
email = Column(String)

Model

user id = Column(Integer, ForeignKey('user.id'))

Example Code

ul = User(name="ed")

ul.addresses = |
Address(email="ed@ed.com"),
Address(email="ed@gmail.com"),
Address(email="edward@python.net"),

]

session = Session()

session.add(ul)
session.commit ()

ul.addresses[l].email = "edward@gmail.com"
session.commit ()

SQLAlchemy

We're done !
Hope this was
enlightening.

http://www.sqlaléchemy.org

